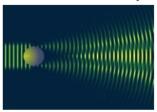
Запишите в тетрадь опорные конспекты

1. Примеры задач (будет 4 оценки)

Явления интерференции и дифракции


можно было объяснить, если свет считать волной.

■Интерференция света

сложение световых волн.

Дифракция света огибание малых препятствий.

Интерференция – явление наложения волн, вследствие которого наблюдается устойчивое во времени усиление или ослабление результирующих колебаний в различных точках пространства.

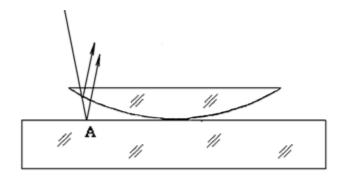
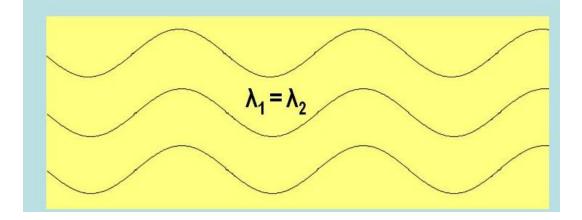
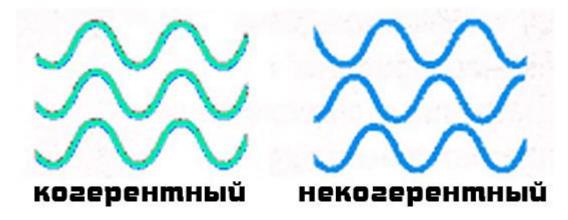


Рис. 1

Рис. 2

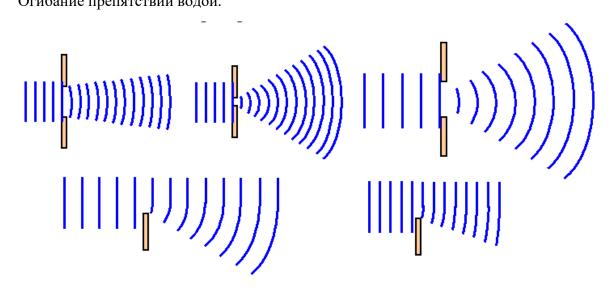
Усиление света (тах)

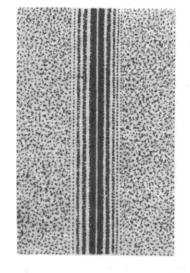

Светлая полоса

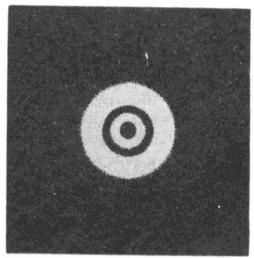

Ослабление света (min)

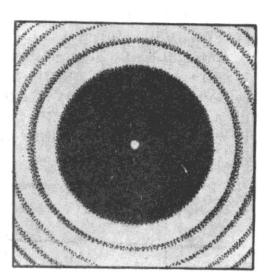
Темная полоса

Когерентные волны

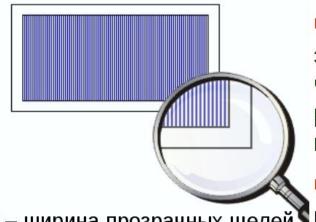

- На латинском языке «cohaerens» находящийся в связи
- Волны имеют одинаковую длину;
- Форма волн не меняются со временем;
- Разность фаз постоянна или рана нулю


Дифракция – огибание волнами препятствия.

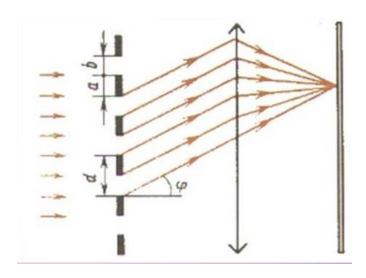

Огибание препятствий водой.



Огибание очень маленьких препятствий световой волной.

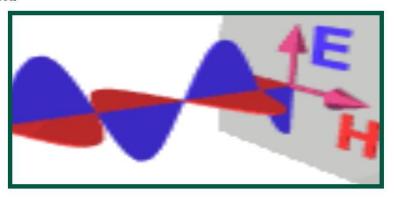

проволочка отверстие диск

Дифракционная решетка


■b – ширина непрозрачных промежутков

=d = a + b; где d - периодрешетки

Дифракционная решетка это совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками.

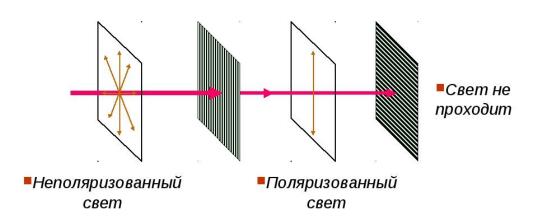

С помощью дифракционной ■а – ширина прозрачных щелей решетки можно проводить очень точные измерения длины волны.

■d sinα = $k \lambda$, где $\kappa = 0,1,2,...$ (Условие главных максимумов дифракционной решетки) 17

Поляризация света

■Свет – электромагнитная волна – поперечная волна.

Поляризация света

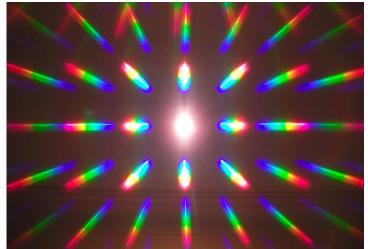

■Естественный (неполяризованный) свет – свет, в котором присутствуют все возможные направления вектора напряженности.

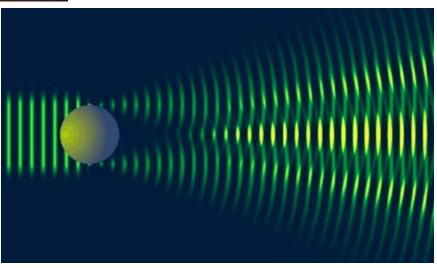
■Поляризованный свет – свет, в котором присутствует только одно направление вектора напряженности, перпендикулярное направлению распространения волны.

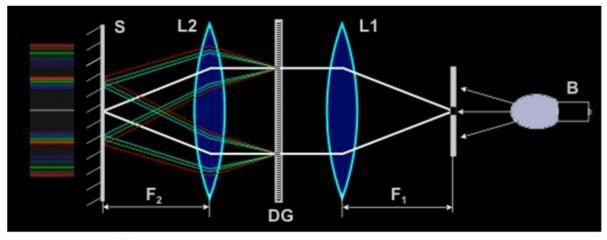
E

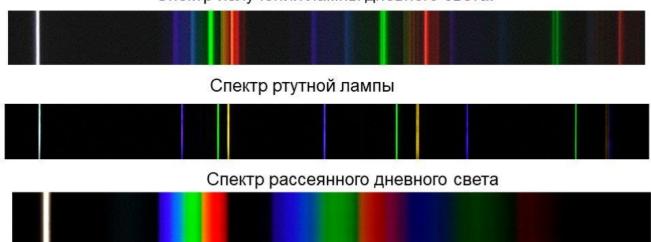
Поляризация света

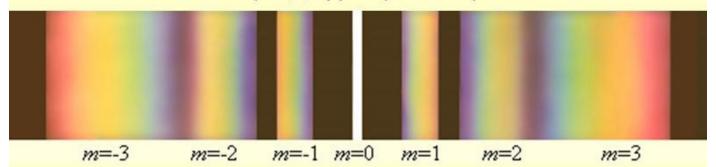
■Свет поляризуется при прохождении через поляроид.




Не рисовать, просто посмотреть.


Дифракция




Спектр излучения лампы дневного света.

Дифракционная решетка – спектральный прибор

Разложение белого света в спектр с помощью дифракционной решетки:

Максимальный порядок спектра:

$$d \sin \varphi = m \lambda$$

Если Sinφ=1, mo

$$d \cdot 1 = m_{max} \lambda$$

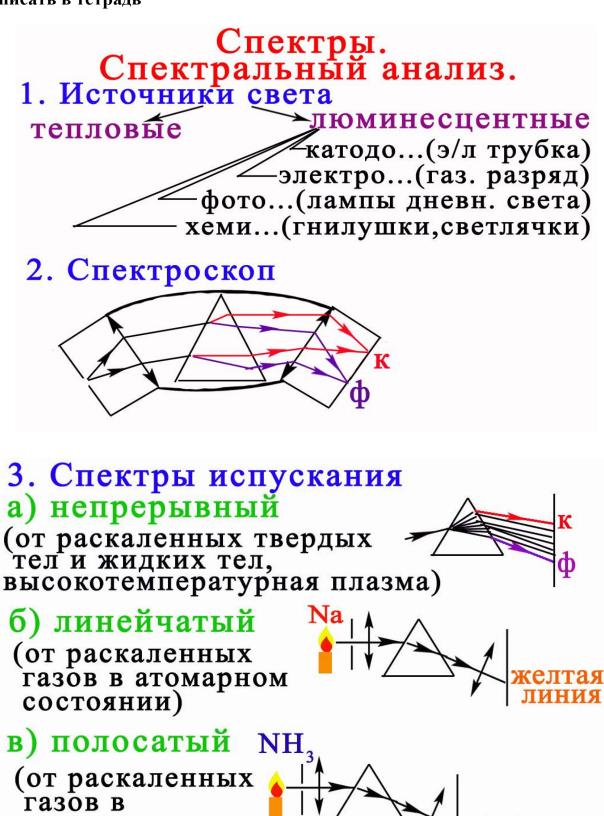
$$m_{max} = \frac{d}{\lambda}$$

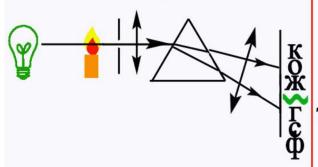
23

Интерференция

Наблюдения интерференции света

Поляризация





молекулярном

состояний)

4. Спектр поглощения

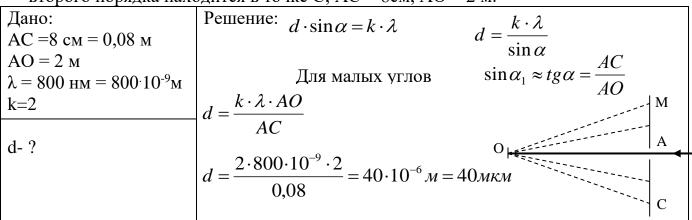
закон Киргофа

Атомы данного вещества поглощают те световые волны, которые они сами испускают

5. Спектральный анализ метод определения химического состава вещества по его спектру преимущества:

- большая чувствительность (до 10⁻¹⁰г)
- min затрат времени
- фактор расстояния
- открытие новых элементов (рубидий)

Примеры задач: Дифракционная решетка


1. Дифракционная решетка имеет 60 штрихов на миллиметр. Под какими углами видны максимумы первого и второго порядков монохроматического излучения с длиной волны 700 нм?

Дано:
$$N = 60$$
 $\lambda = 700 \text{ нм} = 700 \cdot 10^{-9} \text{м}$ $A = \frac{10^{-3}}{N} \text{ м}$ $A = \frac{10^{-3}}{60} = 0.0125 \cdot 10^{-3} \text{ м}$ $A \cdot \sin \alpha = k \cdot \lambda$ $\sin \alpha = \frac{k \cdot \lambda}{d}$ $A \cdot \sin \alpha = k \cdot \lambda$ $\sin \alpha = \frac{k \cdot \lambda}{d}$ $A \cdot \sin \alpha = k \cdot \lambda$ $\sin \alpha = \frac{1 \cdot 700 \cdot 10^{-9}}{0.0125 \cdot 10^{-3}} = 0.056$ $A \cdot \sin \alpha = \frac{1 \cdot \lambda_1}{d}$ $A \cdot \sin \alpha = \frac{1 \cdot \lambda_1}{d}$ $A \cdot \sin \alpha = \frac{1 \cdot 700 \cdot 10^{-9}}{0.0125 \cdot 10^{-3}} = 0.056$ $A \cdot \sin \alpha = \frac{1 \cdot \lambda_1}{d}$ $A \cdot \sin \alpha = \frac{1 \cdot \lambda_1}{d}$ $A \cdot \sin \alpha = \frac{1 \cdot 700 \cdot 10^{-9}}{0.0125 \cdot 10^{-3}} = 0.056$ $A \cdot \sin \alpha = \frac{1 \cdot \lambda_1}{d}$ $A \cdot \cos \alpha = \frac{1$

2. Определить длину волны для линии в дифракционном спектре второго порядка, совпадающей с изображением линии спектра четвертого порядка, у которой длина волны 200 нм.

Дано:
$$k_1=2$$
 $k_2=4$ $\lambda_1=200 \ \text{hm}=200 \cdot 10^{-9} \text{M}$ $\lambda_1=2$ $\lambda_1=\frac{k_2 \cdot \lambda_2}{2}$ $\lambda_1=\frac{k_2 \cdot \lambda_2}{k_1}$ $\lambda_1=\frac{4 \cdot 200 \cdot 10^{-9}}{2}=400 \ \text{hm}$

3. На рисунке дана схема расположения дифракционной решетки О, экрана МС со щелью А и дифракционных максимумов монохроматического луча АО с длиной волны 800 нм. Определить постоянную дифракционной решетки, если максимум второго порядка находится в точке С; АС = 8см, АО = 2 м.

4. На дифракционную решетку, постоянная которой равна 0,02 мм, направлена монохроматическая волна. Первый дифракционный максимум получен на экране, смещенным на 4 см от первоначального направления света. Определить длину волны монохроматического излучения, если расстояние между экраном и решеткой равно 90 см.

Дано:

$$d = 0,02 \text{ мм} = 2 \cdot 10^{-5} \text{м}$$

 $k = 1$
 $a = 4 \text{ см} = 0,04 \text{ м}$
 $B = 90 \text{ см} = 0,9 \text{ м}$
 $\lambda = \frac{d \cdot \sin \alpha}{k}$
Для малых углов
 $\lambda = \frac{2 \cdot 10^{-5} \cdot 0,04}{1 \cdot 0,9} = 0,089 \cdot 10^{-5} = 890$ нм

$$\lambda = \frac{d \cdot \sin \alpha}{k}$$

$$\lambda = \frac{d \cdot a}{k \cdot e}$$

5. Определить длину световой волны, если в дифракционном спектре максимум третьего порядка возникает при оптической разности хода волн 2,25 мкм.

Дано:
$$k=3$$
 $\Delta d = 2,25 \text{ мкм} = 2,25 \cdot 10^{-6} \text{ м}$ $\lambda = \frac{\Delta d}{k}$ $\lambda = \frac{2,25 \cdot 10^{-6}}{3} = 0,75 \cdot 10^{-6} \text{ м} = 750 \text{нм}$

6. Определить оптическую разность хода волн длиной 620 нм, прошедших через дифракционную решетку и образовавших максимум четвертого порядка.

Дано:	Решение: $\Delta d = k \cdot \lambda$
k=4	
$\lambda = 620 \text{ HM} = 620 \cdot 10^{-9} \text{ M}$	$\Delta d = 4 \cdot 620 \cdot 10^{-9} = 2480 \cdot 10^{-9} = 2,48 \text{MKM}$
Δd - ?	